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Section 0: Introduction

The purpose of this paper is to study the Hodge-Arakelov theory of elliptic
curves (cf. [Mzk1-4]) in positive characteristic. The first two §’s (§1,2) are devoted
to studying the relationship of the Frobenius and Verschiebung morphisms of an
elliptic curve in positive characteristic to the Hodge-Arakelov theory of elliptic
curves. We begin by deriving a “Verschiebung-Theoretic Analogue of the Hodge-
Arakelov Comparison Isomorphism” (Theorem 1.1) which underlies our analysis in
§1,2. From this result, we derive, in particular, an explicit description of the étale
integral structure of an elliptic curve in positive characteristic (Corollary 1.3). This
result may be regarded as a characteristic p version of [Mzk3], Theorem 2.2, which
(unlike loc. cit., which holds only for ordinary elliptic curves) is valid even for
supersingular elliptic curves.

Next, in §2, we apply the theory of §1 to obtain a new proof using posi-
tive characteristic methods (Theorem 2.3) of the scheme-theoretic portion of the
Hodge-Arakelov Comparison Isomorphism of [Mzk1]. In some sense, this new proof
is more elegant than the proof of [Mzk1], which involves the verification of vari-
ous complicated combinatorial identities (cf. the Remarks following Theorem 2.3).
This situation is rather reminiscent of the computation of the degree of the hy-
perbolically ordinary locus in p-adic Teichmüller theory ([Mzk5], Chapter V — cf.,
especially, the second Remark following Corollary 1.3). Indeed, in that case, as
well, characteristic p methods (involving Frobenius and Verschiebung) give rise to
various nontrivial combinatorial identities. It would be interesting if this sort of
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phenomenon could be understood more clearly at a conceptual level. Another in-
teresting feature of the proof of Theorem 2.3 is the crucial use of a certain subgroup
scheme of an elliptic curve in positive characteristic which may be regarded as an
analogue of the “global multiplicative subspace” of [Mzk4], §3. That is to say, the
crucial role of this subgroup scheme is reminiscent of the observation (cf. [Mzk4],
§3,4) that such a global multiplicative subspace in the context of elliptic curves over
number fields seems to be crucial to the application of Hodge-Arakelov theory to
diophantine geometry.

Also, we remark that in the course of proving Theorem 2.3, we correct several
misprints (cf. the Remark immediately following the proof of Proposition 2.2) in
[Mzk3].

Finally, in §3, we work out the theory of [Mzk4], §2, in the case of p = 2.
In loc. cit., this theory was only worked out in the case of odd p (for the sake of
simplicity). The case of p = 2 involves dealing with various technical complications
modulo 2. Unlike the case of odd p, where the theory of [Mzk4], §2, allows one to
relate the Lagrangian arithmetic Kodaira-Spencer morphism to the usual geometric
Kodaira-Spencer morphism of a family of elliptic curves, in the case of p = 2, one
obtains the result (Corollary 3.7) that the Lagrangian arithmetic Kodaira-Spencer
morphism is naturally related to the usual geometric Kodaira-Spencer morphism of
the ample line bundle under consideration.

Notation and Conventions:

We will denote by (Mlog

ell )Z the log moduli stack of log elliptic curves over Z (cf.
[Mzk1], Chapter III, Definition 1.1), where the log structure is that defined by the
divisor at infinity. (In [Mzk1-4], Mell was denoted by “M1,0.” This change of nota-
tion was adopted in response to the criticism voiced by a number of mathematicians
with respect to the notation M1,0.) The open substack of (Mell)Z parametrizing
(smooth) elliptic curves will be denoted by (Mell)Z ⊆ (Mell)Z.

Acknowledgements: The author would like to thank A. Tamagawa for stimulating
discussions of the various topics presented in this manuscript.

Section 1: The Verschiebung Morphism in Positive Characteristic

Fix a prime number p. Let Slog be a fine noetherian log scheme over Fp, and

C log → Slog

a log elliptic curve (cf. [Mzk1], Chapter III, Definition 1.1) over Slog. Write D ⊆ S
for the pull-back to S of the divisor at infinity of the moduli stack of log elliptic
curves, and E ⊆ C for the one-dimensional semi-abelian scheme which forms an
open subscheme of the semi-stable compactification C. Also, let us assume that
D ⊆ S forms a Cartier divisor in S, and that on the open dense subscheme
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US
def= S\D ⊆ S

of S, the log structure of Slog is trivial.

Since S is an Fp-scheme, it is equipped with a Frobenius morphism

ΦS : S → S

If n is a nonnegative integer, then we shall denote the result of base-change with
respect to the n-th power of ΦS by means of a superscript Fn. Note that the n-th
power of the Verschiebung morphism

V n
E : EF n → E

for the group scheme E → S extends uniquely to a morphism

V n
G : Gn → C

satisfying the properties: (i) V n
G |US

= V n
E |US

; (ii) in a neighborhood of the divisor
at infinity D, V n

G is a finite étale covering of degree pn.

If the q-parameter of the log elliptic curve C log → Slog admits a pn-th root at
all points of D, then let us write

Hn → S

for the semi-stable genus 1 curve over S which is equal to E → S over US , and, near
D, is the unique minimal semi-stable model of E|US

for which the closure of the
pn-torsion points of E|US

lie in the smooth locus of Hn → S. Then the morphism
[pn]E : E → E given by multiplication by pn extends to a morphism

[pn]H : Hn → C

which factors

Hn
Φn

H−→ Gn
V n

G−→ C

Moreover, this first morphism Φn
H : Hn → Gn may be identified with the n-th

iterate of the relative (over S) Frobenius morphism Hn → HF n

n of Hn. Thus, in
particular, Gn may be identified with HF n

n . Also, over US , this factorization is
the usual factorization of [pn]E : E → E as the composite of the n-th iterate of
Frobenius with the n-th iterate of the Verschiebung morphism.

Next, let us recall the universal extension of E
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E† → E

(cf. [Mzk1], Chapter III, Definition 1.2), which extends naturally to an object
E†

C → C over C (cf. [Mzk1], Chapter III, Corollary 4.3). In [Mzk3], §1, we
constructed (in the case of a base which is flat over Z) an object E†

C,et → C, i.e.,
the “universal extension equipped with the étale integral structure.” By reducing
this object (in the case of a Z-flat base) modulo p, we may thus also speak of
E†

C,et → S in the present context of a base S over Fp. Moreover, in addition to
this “full étale integral structure,” we also constructed “intermediate étale integral
structures E

†;{N}
C,et (where N ≥ 0 is an integer) which “lie between E†

C,et and E†
C

and coincide with E†
C,et in relative degrees ≤ N” — cf. the discussion at the end of

[Mzk3], §4, for more details. Just as in the case of E†
C,et, even though the E

†;{N}
C,et

were defined over Z-flat bases, by reducing modulo p, it makes sense to speak of
the E

†;{N}
C,et in the present context of a base S over Fp.

Now let us fix an integer n ≥ 0. Then it follows from the construction of the
étale integral structure in [Mzk3], §1, that for some sufficiently large integer m ≥ n
(depending on n), we have a canonical section

κHm
: Hm → E

†;{pn−1}
C,et

of E
†;{pn−1}
C,et → C over the “covering” [pm]H : Hm → C. (Here, we assume, for the

moment that the q-parameter of our log elliptic curve admits a pm-th root at all
points of D. In fact, we shall see shortly that if suffices to take m equal to n.)

Thus, if we think of the structure sheaves of the various objects which are affine
over C as OC-algebras, then pulling back functions by κHm

defines a morphism

O<pn

E†
C,et

= O<pn

E
†;{pn−1}
C,et

→ OHm

Here the superscript “< pn” denotes the functions of “relative (or ‘torsorial’) degree
< pn” (cf. [Mzk3], §1, for more details). We are now ready to state and prove the
main result of this §, which is a sort of “Verschiebung-theoretic analogue” of the
“Hodge-Arakelov Comparison Isomorphism” of [Mzk1]:

Theorem 1.1. (Verschiebung-Theoretic Analogue of the Hodge-Arakelov
Comparison Isomorphism) Assume that the q-parameter of the log elliptic curve
C log → Slog admits a pn-th root at all points of D. Then the morphism just defined
in fact factors through OGn

⊆ OGm
⊆ OHm

and induces an isomorphism

O<pn

E†
C,et

= O<pn

E
†;{pn−1}
C,et

∼→ OGn
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of rank pn vector bundles on C. In particular, the morphism κHm
: Hm → E

†;{pn−1}
C,et

factors as the triple composite of the morphism Φm
H : Hm → Gm, the natural

projection Gm → Gn, and a morphism

κGn
: Gn → E

†;{pn−1}
C,et

(which is necessarily unique).

Remark. In particular, in the simplest (nontrivial) case n = 1, we obtain an iso-
morphism

O<p

E†
C

= O<p

E†
C,et

∼→ OG1

i.e., in this case, one can define the isomorphism without ever mentioning “étale
integral structures.” Moreover, (as was pointed out to the author by M. Emerton)
in this case, (if we assume, for simplicity, that S = US , then) the morphism

κG1 : G1 = EF → E†

is the morphism defined by associating to a point of EF (which may be thought of
as a line bundle L of degree 0 on EF ) the line bundle (of degree 0) with connection
on E (i.e., point of E†) given by Φ∗

EL equipped with the unique connection for
which sections of L are horizontal. Of course, one expects that a similar explicit
description can be given for n ≥ 1. We leave the (routine) details of working out
such a description to the enthusiastic reader.

Proof. Let us first show that the morphism factors through OGn
, as asserted.

First, note that by working in the universal case (where, say, S is isomorphic to a
copy of (Mell)Fp

, and the classifying morphism S → (Mell)Fp
is given by a power

of the Frobenius morphism), it suffices to show that this factorization holds in a
neighborhood of the divisor at infinity. But in a neighborhood of infinity (where the
Frobenius and Verschiebung lift naturally to mixed characteristic), the section κHm

factors through Gm (cf. [Mzk3], §1). Thus, we see immediately that the morphism
in question maps into OGm

⊆ OHm
.

Next, let us observe that (cf. the discussion of [Mzk3], §2) if we apply the base-
change Gm → C, it follows that the morphism in question amounts to the map given
by evaluating linear combinations of the polynomials

(
T
j

)
(where j = 0, . . . , pn − 1)

on the points given by mapping T to an element of Z/pmZ. Thus, these polynomials
define functions on the finite set Z/pmZ. But, by Lemma 1.2 below, these functions
in fact arise from functions on the quotient Z/pmZ � Z/pnZ. Since this quotient
corresponds to the intermediate covering Gm → Gn → C (of Gm → C), it thus
follows that the morphism in question maps into OGn

⊆ OGm
, as desired.

Note that the analysis of the preceding paragraph (cf. [Mzk3], §2) shows also
that the morphism in question
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O<pn

E†
C,et

→ OGn

is injective, at least in a neighborhood of infinity. Indeed, this follows from the
fact that the left- (respectively, right-) hand side of this morphism injects into the
reduction modulo p of the sheaf of functions on the right- (respectively, left-) hand
side of the isomorphism

κ∞
et : EF∞ ∼→ (E†

et)
∧

of [Mzk3], Theorem 2.2 (in such a way that the morphism in question is compatible
with the isomorphism “ ∼→” of loc. cit.).

Thus, in summary, we have a morphism

O<pn

E†
C,et

→ OGn

between two vector bundles of rank pn on C which is generically an isomorphism
(since it is injective near infinity, and the ranks are the same). Now if we work in the
universal case (i.e., where S is isomorphic to a copy of (Mell)Fp

, and the classifying
morphism S → (Mell)Fp

is given by a power of the Frobenius morphism), then
in order to conclude that this morphism is an isomorphism, it suffices to observe
(since C is proper and integral over Fp) that the determinant bundles of O<pn

E†
C,et

and

OGn
define the same class in PicQ(C) def= Pic(C) ⊗Z Q. But it is clear from the

construction of E†
C,et (cf. [Mzk3], §1) that

[det(O<pn

E†
C,et

)] = −
pn−1∑
j=0

j · [ωE ]

— where [−] denotes the class of a line bundle in PicQ(C) (thought of as an additive
group), and ωE denotes the line bundle on S given by the relative cotangent bundle
of E over S restricted to the zero section 0E : S → E.

On the other hand, let us observe that the inverse image Gn ×C 0C ⊆ Gn of
the zero section 0C : S → C of C forms a finite flat group scheme over S, which we
shall denote by Gn[V n

G ]. Since the covering Gn → C is clearly a Gn[V n
G ]-torsor, we

have

Gn ×C Gn
∼= Gn ×S Gn[V n

G ]

i.e.,

[det(OGn
)]|Gn

= [det(OGn[V n
G ])]|Gn
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hence (by applying the morphism PicQ(Gn) → PicQ(C) given by taking norms of
line bundles) we have that:

[det(OGn
)] = [det(OGn[V n

G ])]|C

On the other hand, if we write Hn[Φn
H ] def= Hn×Gn

0Gn
⊆ Hn for the kernel of the n-

th iterate of Frobenius (which is clearly a finite flat group scheme over S), then it is
well-known from the elementary theory of abelian varieties (cf., e.g., [Mumf4], §14,
15) that the group schemes Hn[Φn

H ] and Gn[V n
G ] are Cartier dual to one another,

hence that (as vector bundles over C) we have:

OHn[Φn
H ]

∼= (OGn[V n
G ])∨

Moreover, since the Frobenius morphism is totally inseparable (so its fibers are all
geometrically connected) it follows immediately that

[det(OHn[Φn
H ])] =

pn−1∑
j=0

j · [ωE ]

hence that

[det(OGn[V n
G ])] = −[det(OHn[Φn

H ])] = −
pn−1∑
j=0

j · [ωE ] = [det(O<pn

E†
C,et

)]

as desired. This completes the proof. ©

Lemma 1.2. Let T be an indeterminate, and N a nonnegative integer < pn.
Write Poly(Z, Zp) for the ring of Zp-valued polynomial functions on Z. Then (inside
Poly(Z, Zp)) we have: (

T + pn · φ
N

)
≡

(
T

N

)
(mod p)

for all φ ∈ Poly(Z, Zp).

Proof. Write

Ψ(T ) def=
(

T

p

)

and (for a ≥ 0 an integer) Ψa(T ) for the result of iterating T �→ Ψ(T ) a total of
a-times (cf. [Mzk3], §8.2). Thus, Ψa(T ) is a polynomial of degree pa whose leading
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coefficient has the same p-adic absolute value as 1
(pa)! . Then it is well-known and

easy to verify that the polynomials
(

T
N

)
(for N < pn) may be written as polynomials

with Zp coefficients in the Ψa(T ), for a < n. Thus, it suffices to verify that

Ψa(T + pn · φ) ≡ Ψa(T ) (mod pn−a)

for all φ ∈ Poly(Z, Zp), a < n.

We use induction on a. The assertion is clear for a = 0. If the assertion is true
for φ, a, then we have

Ψa(T + pn · φ) = Ψa(T ) + pn−a · ψ

for some ψ ∈ Poly(Z, Zp). Thus, it suffices to verify that

Ψ(Ψa(T ) + pn−a · ψ) ≡ Ψa+1(T ) (mod pn−a−1)

On the other hand, we have

Ψ(Ψa(T ) + pn−a · ψ) =
(

Ψa(T ) + pn−a · ψ
p

)

=
p∑

j=0

(
Ψa(T )
p − j

)
·
(

pn−a · ψ
j

)

=
(

Ψa(T )
p

)
+

p∑
j=1

(
Ψa(T )
p − j

)
·
(

pn−a · ψ
j

)

≡ Ψa+1(T ) (mod pn−a−1)

(where we note that
(
pm−a·ψ

j

) ≡ 0 (mod pm−a−1) for all j = 1, . . . , p). This com-
pletes the proof. ©

In particular, if, in Theorem 1.1, we assume S = US (for simplicity) and let
n → ∞, then we obtain a characteristic p version of [Mzk3], Theorem 2.2, which is
valid even for supersingular elliptic curves:

Corollary 1.3. (Explicit Description of the Étale Integral Structure of
an Elliptic Curve in Positive Characteristic) Assume that S = US. Then the
isomorphisms of Theorem 1.1 for n → ∞ define an isomorphism:

G∞
def= lim←−

n

Gn
∼→ E†

et
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which, for ordinary elliptic curves, may be identified with the reduction modulo p
of the isomorphism of [Mzk3], Theorem 2.2.

Finally, we also have the following consequence of Theorem 1.1 (obtained by
restricting the isomorphism of Theorem 1.1 to the zero section 0C of C → S):

Corollary 1.4. (Explicit Description of the Structure Sheaf of the
Kernel of an Iterate of the Verschiebung Morphism) Write Gn[V n

G ] ⊆ Gn

for the finite flat group scheme Gn ×C 0C ⊆ Gn. Then the morphism κGn
of

Theorem 1.1 defines an isomorphism

O<pn

E†
C,et

|0C
= O<pn

E
†;{pn−1}
C,et

|0C

∼→ OGn[V n
G ]

such that the filtration on the left-hand side given by relative degree over C defines
a filtration on the right-hand side which is dual to the filtration on OHn[Φn

H ] (where

Hn[Φn
H ] def= Hn×Gn

0Gn
⊆ Hn) given by considering j-th infinitesimal neighborhoods

of 0Hn
, for varying j.

Proof. It remains only to observe the asserted coincidence of filtrations. But this
follows from the fact that the successive subquotients of both filtrations are of the
form ω⊗−j

E (for some integer j ≥ 0). Thus, any nonzero discrepancy between these
two filtrations would imply the existence of a nonzero global section of a negative
power of the line bundle ωE over C. By working in the universal case (i.e., where
S is isomorphic to a copy of (Mell)Fp

, and the classifying morphism S → (Mell)Fp

is given by a power of the Frobenius morphism), we thus see that this would imply
the existence of a nonzero section of a negative power of ωE over (Mell)Fp

, which
is absurd since ωE is ample on (Mell)Fp

. ©

Section 2: The Comparison Isomorphism in Positive Characteristic

The purpose of the present § is to present a new approach to the Hodge-Arakelov
Comparison Isomorphism of [Mzk1], based on the characteristic p methods of §1
— cf. especially Theorem 1.1.

In this §, we maintain the notation of §1. In addition, we introduce the follow-
ing notation:

C† def= E
†;{pn−1}
C,et ; G†

n
def= C† ×C,V n

G
Gn; H†

n
def= G†

n ×Gn,Φn
H

Hn = C† ×C,[pn]H Hn

Thus, we have a natural commutative diagram:
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H†
n −→ G†

n −→ C†⏐⏐� ⏐⏐� ⏐⏐�
Hn

Φn
H−→ Gn

V n
H−→ C

(where both squares are cartesian, and we observe that the composite of the two
lower horizontal arrows is the morphism [pn]H : Hn → C arising from multiplication
by pn). Moreover, the section κGn

: Gn → E
†;{pn−1}
C,et of Theorem 1.1 defines sections

κG†
n

: Gn → G†
n; κH†

n
: Hn → H†

n

that are compatible with each other and with the above commutative diagram.

Next, let us assume that we are given a torsion point

ηH ∈ Hn(S)

of order m, where (m,p) = 1. Write ηG ∈ Gn(S) for the image of ηH in Gn(S).
These torsion points define sheaves

LH
def= OHn

(pn · [ηH ]); LG
def= OGn

([ηG])

on Hn and Gn, respectively, which are (ample) line bundles over US . Near infinity,
these sheaves are only coherent, but, in fact, may in most cases be treated as
ample line bundles, by working (in a neighborhood of infinity) with appropriate
μm-coverings

H ′
n → Hn; G′

n → Gn

(i.e., coverings which induce bijections on the various irreducible components of the
special fibers at infinity, and which induce the “raising to the m-th power maps”
on each of the copies of Gm in the special fibers at infinity). These coverings have
the property that the divisors [ηH ], [ηG] become Cartier when pulled back via these
coverings. Thus, one may think of sections of the sheaves LH , LG over Hn, Gn,
as μm-invariant sections of the resulting (ample) line bundles over H ′

n, G′
n. Note,

moreover, that since μm is a group scheme of multiplicative type, the operation of
taking μm-invariants is exact.

In particular, it follows that (if, by abuse of notation, we denote all structure
morphisms to S by f) the push-forward sheaves

f∗(LH |H†
n
); f∗(LG|G†

n
)

admit natural filtrations F r(−) (of ranks r · pn, r, respectively, for r = 1, . . . , pn)
whose successive subquotients F r+1/F r(−) may be identified with
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τ⊗r
E ⊗OS

f∗(LH); τ⊗r
E ⊗OS

f∗(LG)

(where τE
def= ω∨

E), respectively. Moreover, since Φn
H is purely inseparable of degree

pn, it follows that the divisor (Φn
H)−1([ηG]) is linearly equivalent to the divisor

pn[ηH ]. This gives rise to a natural Hn[Φn
H ]-action on LH (compatible with the

evident Hn[Φn
H ]-action on Hn itself). Relative to this action, we have

f∗(LG|G†
n
) = f∗(LH |H†

n
)Hn[Φn

H ]

(where the superscript Hn[Φn
H ] denotes “Hn[Φn

H ]-invariants”).

We are now ready to define the evaluation maps that will appear in the com-
parison isomorphisms. First, we observe that by using the sections κH†

n
, κG†

n
, we

may regard the group schemes

Hn[pn] ⊆ Hn; Gn[V n
G ] ⊆ Gn

(i.e., the kernels of the morphisms [pn]H : Hn → C; V n
G : Gn → C, respectively)

as being contained in H†
n, G†

n, respectively. Thus, restriction to these subschemes
yields morphisms

ΞH : f∗(LH |H†
n
) → LH |Hn[pn]

ΞG : f∗(LG|G†
n
) → LG|Gn[V n

G ]

with the property that the latter morphism is the result of applying the operation
of taking Hn[Φn

H ]-invariants to the former.

Before proving the comparison isomorphisms involving these evaluation maps,
we would like to discuss some technical points, as follows: First, let us note that
the tautological inclusion OGn

↪→ OGn
([ηG]) = LG defines a morphism

OS → f∗(LG)

whose composite with the restriction morphism f∗(LG) → LG|0G
= OS (where we

use the fact that since the order m of ηG is prime to p, we have 0G

⋂
ηG = ∅) is the

identity. In fact, it is easy to see that here, 0G may be replayed by any pn-torsion
point, and hence that (by elementary algebraic geometry) we have the following:

Lemma 2.1. These two morphisms are isomorphisms, i.e., we have:

OS
∼→ f∗(LG) ∼→ LG|σ = OS
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(where σ ∈ Gn(S) is any pn-torsion point). In particular, f∗(LG) is a line bundle
on S of degree zero.

Next, we would like to relate the evaluation maps constructed above to those
that appear in the theory of [Mzk1]. To do this, we would like first to make the
following observation concerning concerning integral structures over Z (or Z[ 12 ]):

Proposition 2.2. Let R
def= Z if p = 2, R

def= Z[12 ] if p > 2. Assume (just for the
remainder of this Proposition and its proof) that S is a an R-flat scheme, and that
E → S is a family of elliptic curves over S. Notation:

(1) Write E†
[pn]

def= E† ×E,[pn]E E (where [pn]E : E → E is multipli-
cation by pn) — cf. [Mzk3], §9. This object also has an “étale
integral structure version” E†

[pn],et

def= E†
et ×E,[pn]E E.

(2) Write ∗ def= OE([0E ]); E∗
[pn] → E for the Hodge torsor asso-

ciated to the line bundle OE(pn · [0E ]) (cf. [Mzk3], §3) — i.e.,
the ωE-torsor of connections on this line bundle. Note that this
is compatible with the notation of [Mzk3], §9. Moreover, there is
an “étale integral structure version” E∗

[pn],et of E∗
[pn] (cf. [Mzk3],

§9, for details).

Then, if we think of these objects E†
[pn], E†

[pn],et, E∗
[pn], E∗

[pn],et as being various
“R-integral structures” on the object E† ⊗Z Q, then the following coincidences of
R-integral structures hold: E†

[pn] = E∗
[pn]; E†

[pn],et = E∗
[pn],et.

Proof. Indeed, by working in the universal case (i.e., over (Mell)Z), one sees that
coincidences of integral structures may be verified in a formal neighborhood of
infinity, i.e., in the case where

S
def= Spec(R[[q

1
2pn ]][q−1])

and E → S is the Tate curve with q-parameter equal to q. Write E′ → S for the
Tate curve with q-parameter equal to q

1
pn . Then, if we think of E (respectively, E′)

as the quotient “Gm/qZ” (respectively, “Gm/q
1

pn ·Z” ), then the natural inclusion
Z ↪→ 1

pn · Z induces an étale isogeny

ψ : E → E′

of degree pn (i.e., the morphism Gm/qZ → Gm/q
1

pn ·Z covered by the identity mor-
phism Gm → Gm on Gm).
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Next, let us denote by ε ∈ E′(S) the origin 0E (respectively, the 2-torsion point
defined by q

1
2pn ) if p > 2 (respectively, if p = 2). Then it follows easily from an

elementary computation — namely, the fact that the sum of the fractions i
d (for

i = 0, . . . , d − 1) is equal to 1
2d · d(d − 1) = 1

2 (d − 1) (which is ∈ Z if d is odd, and
∈ 1

2Z\Z if d is even) — that

ψ−1([ε]) = pn · [0E ]

(where “[−]” denotes the divisor class defined by the divisor inside the brackets).
Let us denote the Hodge torsor associated to ε by (E′)ε → E′. Then we have:

(E′)ε ×E′ E = E∗
[pn]

(by “functoriality of formation of Hodge torsors”) and

(E′)† ×E′ E = E†
[pn]

(cf. the discussion of [Mzk3], §9). Also, similar statements hold for “étale integral
structure versions.”

Now we are ready to compare integral structures. First, let us write ε∞ ∈ Q

for the invariant (associated to ε and) denoted by “iχ/2m” in [Mzk3], §9. Sorting
through the definitions, one verifies easily that if p = 2 (respectively, p > 2):

ε∞ = 0 (respectively, ε∞ =
1
2
)

— i.e., in either case, we obtain the key fact that ε∞ ∈ R. If we split (E′)† → E′

via its canonical q-adic formal splitting, and write T for the usual coordinate on
the affine portion of (E′)† determined by the trivialization dU/U of ωE′ (cf. the
notation of [Mzk3], §9), then the integral structure of (E′)ε (respectively, (E′)†) is
given by polynomials in:

T − ε∞ (respectively, T )

But since ε∞ ∈ R, it follows that these two integral structures coincide. The étale
integral structure versions are handled similarly by considering

(
T−ε∞

r

)
,
(
T
r

)
instead

of (T − ε∞)r, T r (for r ≥ 0). ©

Remark. We would like to take this opportunity to correct two misprints in [Mzk3],
§9, p. 78:

(i) The equation on the upper half of the page following the
phrase “This makes it natural to define” should read E†

[d],et

def=

E†
et ×E,[d] E.
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(ii) In the first line of Definition 9.1, the phrase “is to be” should
read “to be.”

Remark. Proposition 2.2 applies to the characteristic p discussion of the present
§ as follows: First of all, since the order m of ηH is prime to p, it follows that
(at least over US) the Hodge torsor associated to LH is naturally isomorphic (cf.
[Mzk3], Proposition 3.4) to (the reduction modulo p of) the object E∗

[pn] appearing
in Proposition 2.2. Thus, (since the object H†

n|US
of the present discussion is clearly

the same as the reduction modulo p of the object E†
[pn] appearing in Proposition

2.2) Proposition 2.2 implies that:

The Hodge torsor associated to LH is naturally isomorphic to
H†

n|US
.

A similar statement holds for étale integral structure versions. Thus, in particular,
it follows that:

The evaluation morphism ΞH constructed above may be identi-
fied with the reduction modulo p of the evaluation morphism of
[Mzk1], Introduction, Theorem A.

(cf. [Mzk3], §9, especially Theorem 9.2).

We are now ready to discuss the “characteristic p approach to the Hodge-
Arakelov Comparison Isomorphism of [Mzk1]”:

Theorem 2.3. (Positive Characteristic Approach to the Hodge-Arakelov
Comparison Isomorphism) Let p be a prime number; n ≥ 1 an integer; and

C log → Slog

a log elliptic curve over a fine noetherian log scheme Slog in characteristic p.
Write

Hn
Φn

H−→ Gn
V n

G−→ C

for the factorization of the compactification [pn]H : Hn → C of the morphism
“multiplication by pn on E” into the n-th iterate of Frobenius, composed with the
n-th iterate of the Verschiebung morphism. Also, we introduce the notation:

C† def= E
†;{pn−1}
C,et ; G†

n
def= C† ×C,V n

G
Gn; H†

n
def= G†

n ×Gn,Φn
H

Hn = C† ×C,[pn]H Hn

Moreover, let us assume that we are given a torsion point

ηH ∈ Hn(S)
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of order m, where (m,p) = 1. Write ηG ∈ Gn(S) for the image of ηH in Gn(S),
and

LH
def= OHn

(pn · [ηH ]); LG
def= OGn

([ηG])

for the resulting sheaves on Hn, Gn. Then the section κGn
: Gn → E

†;{pn−1}
C,et of

Theorem 1.1 determines evaluation morphisms

ΞH : f∗(LH |H†
n
) → LH |Hn[pn]

ΞG : f∗(LG|G†
n
) → LG|Gn[V n

G ]

with the following properties:

(1) ΞG is an isomorphism over S.

(2) ΞH is an isomorphism over US
def= S\D.

Here, D ⊆ S is the pull-back to S of the divisor at infinity of the moduli stack
(Mell)Fp

.

Proof. First, I claim that over US , ΞG is an isomorphism if and only if ΞH is.
Indeed, to simplify notation, let us assume (just for the remainder of this paragraph)
that US = S. Then it follows that the theta group (cf. [Mumf1,2,3]; [Mumf4], §23;
or, alternatively, [Mzk1], Chapter IV, §1, for an exposition of the theory of theta
groups) GLH

of LH acts on the line bundle LH . Since LH has relative degree pn

over S, this theta group fits into an exact sequence

1 → Gm → GLH
→ E[pn] → 1

and the fact that (Φn
G)∗LG = LH implies that LG determines a section sG :

E[Φn
E ] → GLH

of this exact sequence over E[Φn
E ] ⊆ E[pn] ⊆ E. In the termi-

nology of theta groups, the image of sG is a Lagrangian subgroup of the theta group
(cf. [MB], Chapitre V, Définition 2.5.1). It thus follows from the theory of GLH

-
modules that the GLH

-linear morphism ΞH is an isomorphism if and only if the
morphism ΞG — which is obtained from ΞH by taking E[Φn

E ]-invariants — is an
isomorphism. This completes the proof of the claim.

The fact that ΞG is an isomorphism may be proven by arguing as follows:
First, we observe that it suffices to work in the universal case, where, say, S is
proper, connected, and smooth of dimension 1 over Fp, and the classifying morphism
S → (Mell)Fp

is finite. Then ΞG is a morphism between two vector bundles of rank
pn on S, hence it will be an isomorphism as soon as we verify the following two
facts:

(1) ΞG is an isomorphism over the generic point of S.
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(2) The degrees of the domain and range of ΞG coincide.

Fact (1) follows from the second Remark following Proposition 2.2, together with
the analysis in a neighborhood of infinity given, for instance, in [Mzk1], Chapter
V, Theorem 6.2 (cf. also [Mzk3], §6). Fact (2) follows from the fact that (in light
of Lemma 2.1) the domain (respectively, range) of ΞG has the same degree as the
domain (respectively, range) of the isomorphism of Corollary 1.4. This completes
the proof that ΞG is an isomorphism. ©

Remark. Thus, in particular, the above argument gives a new proof of the (scheme-
theoretic) characteristic zero portion of [Mzk1], Theorem A — at least in the case
when d is a power of a prime number, and m is prime to d. More precisely, although
we used the computation at infinity of [Mzk1], the characteristic p argument given
above may be used to replace the complicated degree computations (especially when
d is even!) of [Mzk1], Chapter VI, proof of Theorem 3.1. (Note that although
here we are working in characteristic p, we obtain characteristic zero consequences,
since any morphism between vector bundles on a flat, proper Z-scheme which is
an isomorphism modulo p is necessarily an isomorphism over Q.) Also, we observe
that, in fact:

The above argument furnishes a new proof of the scheme-theoretic,
characteristic zero portion of the Hodge-Arakelov Comparison
Isomorphism (i.e., [Mzk1], Theorem A) for arbitrary d, m (as
in the statement of this Theorem).

Indeed, this follows from the fact that the essential point of this characteristic
zero portion of the theorem is a certain coincidence of degrees (cf. the degree
computations of [Mzk1], Chapter VI, proof of Theorem 3.1). On the other hand,
it is relatively easy to see (without computing the degrees precisely!) that the two
degrees in question are both polynomials in d. Thus, their difference is a polynomial
in d which vanishes (by the above characteristic p argument) for all d equal to a
power of (sufficiently large) p. But this implies that this difference is identically
zero (for all d).

Remark. One way to interpret the preceding Remark is the following:

The characteristic p methods (involving the Frobenius and Ver-
schiebung morphisms) of the present paper yield a new proof of
the various combinatorial identities inherent in the computation
of degrees in [Mzk1], Chapter VI, proof of Theorem 3.1.

This situation is rather reminiscent of the situation of [Mzk5], Chapter V — cf.,
especially, the second Remark following Corollary 1.3. Namely, in that case, as
well, characteristic p methods (involving Frobenius and Verschiebung) give rise to
various nontrivial combinatorial identities. It would be interesting if this sort of
phenomenon could be understood more clearly at a conceptual level.
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Remark. One interesting feature of the above proof is the crucial use of the isogeny
Φn

H : Hn → Gn, i.e., (over US) the (n-th iterate of the) Frobenius morphism Φn
E :

E → EF n

. Put another way, this amounts to the use of the subgroup scheme
E[Φn

E ] ⊆ E (i.e., the kernel of Φn
E), which, of course, does not exist in characteristic

zero. Note that this subgroup scheme is essentially the same as the “multiplicative
subspace” that played an essential role in [Mzk4], §2. That is to say, it is interesting
to note that just as in the context of [Mzk4] (cf., especially, §3, 4) the crucial
arithmetic object that one wants over a number field is a “global multiplicative
subspace,” in the above proof, the crucial arithmetic object that makes the proof
work (in positive! characteristic) is the “global multiplicative subspace” E[Φn

E ] ⊆ E

(which is defined over all of (Mell)Fp
).

Remark. Another interesting and key point in the above proof is the fact that,
unlike the case in characteristic zero (where the structure sheaf of a finite flat
group scheme on a proper curve always has degree zero):

In positive characteristic, the structure sheaf of a finite flat group
scheme on a proper curve can have nonzero degree.

In fact, it is precisely because of this phenomenon that in order to make the com-
parison isomorphism hold in characteristic zero over the proper object (Mell)Q, it
is necessary to introduce Gaussian poles (cf., e.g., [Mzk1], Introduction, §1).

Section 3: Lagrangian Galois Actions in the 2-adic Case

In [Mzk4], §2, we assumed (for the sake of simplicity) that the prime of interest
p was odd. In the present, §2, we would like to work out the theory of [Mzk4], §2,
in the case p = 2. This involves dealing with various subtle technical issues modulo
2.

§3.1. Definition and Construction

Let p = 2. Let d > 1 be a power of 2. Let A be a complete discrete valuation
ring of mixed characteristic (0, p), with perfect residue field, which contains all the
2d-th roots of unity. Write K (respectively, k) for the quotient field (respectively,
residue field) of A.

Set

S
def= Spec(A[[q

1
N ]])

for some odd positive integer N . Endow S with the log structure defined by the
divisor V (q

1
N ) ⊆ S, and denote the open subscheme of S where the log structure

is trivial by US ⊆ S. Write
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ΠS
def= π1(US ⊗ Q)

(for some choice of basepoint), and

C log → Slog

for the log elliptic curve determined by the “Tate curve,” i.e., the degenerating
elliptic curve E → S (more precisely: one-dimensional semi-abelian scheme) with
“q-parameter” equal to q ∈ OS .

Set

Z
def= Spec(A[[q

1
2N·d ]])

Endow Z with the log structure defined by the divisor V (q
1

2N·d ) ⊆ Z. Thus, we
obtain a morphism Z log → Slog of log schemes.

Next, let us write

Ed,Z → Z

for the object which is equal to the one-dimensional semi-abelian scheme EZ
def=

E ×S Z over UZ
def= US ×S Z, and, “near infinity,” is the pull-back to Z of the

object “Ed” (cf. [Mzk1], Chapter IV, §4, where we take “N” of loc. cit. to be
d). In words, this object “Ed” is the result of removing the nodes from the unique
regular semi-stable model of the Tate curve (with q-parameter “q”) over the base
Z[[q

1
d ]]. Then the object “E∗

[d],et → E” of [Mzk3], §9, defines an object

E∗
[d],et,Z → Ed,Z

(which, over (UZ)Q, may be identified with the universal extension E† → E of E)
over Ed,Z . Indeed, the discussion of [Mzk3], §9, applies literally over UZ ; “near
infinity,” the fact that we get an object over Ed,Z follows from the fact that the
integral structure in question, i.e., “

(
d·(T−(iχ/2m))

r

)
” (in the notation of [Mzk3], §9)

is invariant with respect to the transformations T �→ T + j
d , ∀j ∈ Z.

Next, let us observe EZ has a unique finite flat subgroup scheme Gμ
Z annihilated

by d. This subgroup scheme is naturally isomorphic to μd. Thus, we have:

μd
∼= Gμ

Z ⊆ EZ [d] ⊆ Ed,Z

(where EZ [d] ⊆ Ed,Z denotes the closed subscheme which is the kernel of multipli-
cation by d on Ed,Z). Note, moreover, that, in fact, Gμ

Z descends to a subscheme
Gμ

S ⊆ E[d] ⊆ E over S.
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Since the quotient (EZ [d])/Gμ
Z is naturally isomorphic to the constant group

scheme (Z/dZ)Z , it is easy to see that, over Z, there exists a finite étale group
scheme HZ ⊆ EZ [d] such that the natural morphism

Gμ
Z ×Z HZ → EZ [d]

is an isomorphism of group schemes. Thus, if we write EHZ

def= Ed,Z/HZ , then we
see that EHZ

→ Z is a one-dimensional semi-abelian group scheme (i.e., its fibers
are all geometrically connected), and that the natural quotient morphism

(EZ ⊆) Ed,Z � EHZ

(over Z) has kernel equal to HZ , hence is finite étale of degree d. Moreover, we
note that the q-parameter of EHZ

is a d-th root of q. In particular, (unlike Gμ
Z)

HZ is not defined over S.

Next, let us assume that we have been given an odd integer m > 1, together
with a torsion point

η ∈ E∞,S(S∞)

of order precisely m which defines a metrized line bundle

L def= Lst,η

on E∞,S (cf. [Mzk1], Chapter V, §1, for a discussion of the construction of the
object “Lst,η”). Thus, in particular, over US :

L|US
= OE(d · [η])|US

Here, we recall that S∞ is the stack (in the finite, flat topology) obtained from S by
gluing together US (“away from infinity”) to the profinite covering of S (“near infin-
ity”) defined by “adjoining a compatible system of M -th roots of the q-parameter”
(as M ranges multiplicatively over the positive integers). Over S∞, we have the
group object

E∞,S → S∞

which is equal to E → S over US (“away from infinity”), and whose “special fiber”
consists of connected components indexed by Q/Z, each of which is isomorphic to
a copy of Gm — cf. the discussion of [Mzk1], Chapter V, §2, for more details.

Note that L has an associated theta group (cf. [Mzk1], Chapter IV, §1, §5, for
a discussion of theta groups) GZ over Z which fits into an exact sequence:
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1 → (Gm)Z → GZ → EZ [d] → 1

Also, let us assume that we are given a lifting

HZ ⊆ GZ

of HZ (i.e., HZ
∼→HZ via GZ → EZ [d]). Thus, HZ is a “Lagrangian subgroup” (cf.

[MB], Chapitre V, Définition 2.5.1) of the theta group GZ . In particular, we get a
natural action of HZ

∼= HZ on L.

Remark. To see that such a lifting HZ ⊆ GZ exists, one may, for instance, apply the
canonical section of [Mzk1], Chapter IV, Theorem 1.6, (1), over a double covering
E′

d,Z → Ed,Z (so L|E′
d,Z

will be a (metrized) line bundle of degree 2d) with the

property that HZ ⊆ Ed,Z lifts to a subgroup scheme H ′
Z ⊆ E′

d,Z such that H ′
Z

∼→HZ .
Note that since the q-parameter of E′

d,Z will then necessarily be a square root of q,
it follows that in order to ensure that H ′

Z exist, we need to know the existence of a
2d-th root of q in OZ . This is why we defined “Z” as we did (i.e., rather than with
the “2N · d” replaced by “N · d,” as was done in the case of odd p).

In the following discussion, we will always denote (by abuse of notation) struc-
ture morphisms to S, Z, E∞,S by f (cf. the conventions of [Mzk1]). We would like
to consider the push-forward

VL
def= f∗(LE∗

[d],et,Z
)

of the pull-back LE∗
[d],et,Z

of the metrized line bundle L to E∗
[d],et,Z . Here, we take the

integral structure of this push-forward “near infinity” to be the unique GZ-stable
integral structure determined by the “ζCG

r ” — cf. [Mzk1], Chapter V, Theorem
4.8; the discussion of [Mzk3], §4.1, 4.2. Thus, VL is a quasi-coherent sheaf on Z,
equipped with a filtration F r(VL) ⊆ VL, i.e., the subsheaf consisting of sections
whose “torsorial degree” is < r. (Here, by “torsorial degree,” we mean the relative
degree with respect to the structure of “relative polynomial algebra” on OE† over
OE (arising from the fact that E† → E is an affine torsor). Since E† may be
identified with E∗

[d],et,Z over (UZ)Q, this definition also applies to sections of VL.)
In particular, we shall write

HDR
def= F d(VL)

for the object which appears in [Mzk1], Introduction, Theorem A (cf. also [Mzk3],
Theorem 9.2). Thus, HDR is a vector bundle of rank d on Z. Finally, observe that
the theta group GZ acts naturally on VL, F r(VL), HDR.

Now we come to the portion of the discussion involving phenomena unique to
the prime p = 2.
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Proposition 3.1. The objects introduced above satisfy the following properties:

(i) The integral structure of E∗
[d],et,Z is equal to that of E†

[d],et,Z

def=

E†
[d],et|Z (i.e., the pull-back via the multiplication by d morphism

Ed,Z → EZ of the universal extension E†
et|Z over Z equipped

with the étale integral structure — cf. the notation of [Mzk3],
§9). In particular, the d-torsion subgroup scheme EZ [d] ⊆ Ed,Z

lifts naturally to a subgroup scheme E∗
Z [d] ⊆ E∗

[d],et,Z .

(ii) The canonical section

(EZ [d] ⊇ Gμ
Z ⊇) 2 · Gμ

Z → GZ

(cf. [Mzk1], Chapter IV, Theorem 1.6, (1)) extends to all of Gμ
Z .

In particular, (despite the fact that d is even!) we obtain a theta
trivialization

L|Gμ
Z

∼= L|0EZ
⊗OZ

OGμ
Z

Here, 0EZ
∈ EZ(Z) is the zero section of EZ

def= E ×S Z → Z.

Proof. Assertion (i) follows from the fact that the integral structure used to define
E∗

[d],et,Z is given by “
(
d·(T−(iχ/2m))

r

)
” (in the notation of [Mzk3], §9), an expression

which gives the same integral structure as “
(
d·T
r

)
.” Note that here we use the

assumptions that (a.) m is odd; (b.) d > 1 is even.

Assertion (ii) is proven by observing that, if we descend L to some LH (via
the lifting HZ ⊆ GZ discussed above) on EHZ

, the resulting degree 1 (metrized)
line bundle is (up to translation by an odd order torsion point) that defined by a
nonmultiplicative (i.e., lying outside the image of Gμ

Z in EHZ
) order 2 torsion point.

In particular, the invariant “iχ/2m” associated to this LH is ∈ Z2 (cf. the theory
of [Mzk1], Chapter V, §4; as well as [Mzk1], Chapter IV, Lemma 5.4; the discussion
of [Mzk3], §4.3). Put another way, the essential phenomenon at work here is the
elementary numerical fact that (for D ≥ 1 an integer)

1
D

D−1∑
j=0

j =
1
2
(D − 1)

lies ∈ Z if D is odd, and ∈ 1
2Z\Z if D is even.

On the other hand, (as one may recall from the discussion of [Mzk3], §4.3 —
cf., especially, the proof of Lemma 4.1):

The class of this invariant “iχ/2m” associated to LH in 1
2Z2/Z2

is precisely the obstruction to the existence of the desired section
Gμ

Z → GZ .
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Thus, the fact that this invariant is ∈ Z2 implies that this obstruction is 0, as
desired. ©

Remark. The description of LH given in the above proof shows that in fact, this (a
priori) metrized line bundle is defined as an ordinary line bundle over some semi-
stable model of EHZ

= Ed,Z/HZ over Z. (More precisely, the semi-stable model
with the property that the group of irreducible components of its special fiber is
equal to 1

2N Z/Z is sufficient.) In particular, it follows that L (respectively, VL) is
defined as an “ordinary line bundle” (respectively, “ordinary vector bundle”) over
some semi-stable model of EZ → Z (respectively, over Z).

Next, let us note that since L is defined over E∞,S (i.e., without base-changing
to Z), it follows that L|0EZ

is, in fact, defined over S∞ (i.e., in other words, it is
defined over S, except that “near infinity,” one may need to adjoin roots of the
q-parameter). In particular, it follows that there is a natural action of Gal(Z/S)
— hence of ΠS (via the surjection ΠS � Gal(Z/S)) — on L0EZ

.

Let us denote HZ-invariants by means of a superscript HZ . Then recall that
VHZ

L admits the following interpretation: Since HZ
∼= HZ acts on Ed,Z ; E∞,S ;

E∗
[d],et,Z ; L, we may form the quotients of these objects by this action. This yields

objects (Ed,Z)H (i.e., EHZ
), (E∞,S)H , (E∗

[d],et,Z)H , LH (a metrized line bundle on
(E∞,S)H). Then we have:

VHZ

L = f∗{LH |(E∗
[d],et,Z

)H
}

(where f as usual denotes the structure morphism to Z) — cf., e.g., [Mzk1], Chapter
IV, Theorem 1.4.

Thus, by restricting HZ-invariant sections of L over E∗
[d],et,Z — i.e., sections

of LH over (E∗
[d],et,Z)H — to Gμ

Z ⊆ EZ [d] ∼= E∗
Z [d] ⊆ E∗

[d],et,Z , and composing with
the theta trivialization of Proposition 3.1, (ii), we obtain a morphism:

ΞHZ

V : VHZ

L → L|0EZ
⊗OZ

OGμ
Z

Similarly, if we introduce Gaussian poles (cf. [Mzk1], Introduction, Theorem A,
(3); [Mzk3], Theorem 6.2), we get a morphism:

ΞGP,HZ

H : HGP,HZ

DR → L|0EZ
⊗OZ

OGμ
Z

Then the main result of [Mzk1] may be summarized as follows:

Corollary 3.2. (Lagrangian Version of the Main Result of [Mzk1])
Assume that d is a power of p = 2, and that m is odd. Then restriction of HZ-
invariant sections of VL to Gμ

Z gives rise to a morphism

ΞHZ

V : VHZ

L → L|0EZ
⊗OZ

OGμ
Z
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whose restriction
ΞHZ

H : HHZ

DR → L|0EZ
⊗OZ

OGμ
Z

to HHZ

DR
def= F d(VHZ

L ) ⊆ VHZ

L satisfies: (i) ΞHZ

H is an isomorphism over UZ ; (ii) if
one introduces Gaussian poles, i.e., if one considers

ΞGP,HZ

H : HGP,HZ

DR → L|0EZ
⊗OZ

OGμ
Z

then ΞGP,HZ

H is an isomorphism over Z.

Proof. This Corollary is a special case of [Mzk1], Introduction, Theorem A, (2),
(3). Note that the “zero locus of the determinant” is empty because of our assump-
tion that m is odd (hence invertible on S). ©

Definition 3.3. The natural action of ΠS on Gμ
Z , together with the isomorphism

ΞGP,HZ

H of Corollary 2.2, and the natural action of ΠS on L|0EZ
, define a natural

action of ΠS on HGP,HZ

DR , which we shall refer to as the Lagrangian Galois action
on HGP,HZ

DR .

Remark. Just as in [Mzk4], §2.1, (unlike the “naive” Galois action) the Lagrangian
Galois action depends on the choice of the additional data Gμ

Z , HZ . Also, just as in
[Mzk4], §2.1, although a priori, the Lagrangian Galois action appears to require the
Gaussian poles (i.e., it appears that it is not necessarily integrally defined on HHZ

DR),
in fact, however, we shall see in §3.2 below that the Lagrangian Galois action has
the remarkable property that it is defined without introducing the Gaussian poles.

§3.2. Crystalline Properties

We maintain the notation of §3.1.

The first portion of [Mzk4], §2.2, now goes through with little change: As in loc.
cit., we first would like to relate the present discussion to the theory of connections
in [Mzk3]. Thus, recall that L|0EZ

is a line bundle on Z equipped with a natural
ΠS-action derived from a trivialization

τ : L|0EZ

∼= q−
a

2N·d · OZ

(where a is a nonnegative integer < 2Nd) — which, in the terminology of the
discussion of [Mzk3], §5, determines a ΠS-equivariant rigidification τ of L at 0EZ

.
In particular, τ defines a ΠS-invariant logarithmic connection on the line bundle
L|0EZ

. Thus, by the theory of [Mzk3], §5, this rigidification gives rise to a ΠS-
invariant (logarithmic) connection

∇VHZ

L
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on VHZ

L (cf. [Mzk3], Theorems 5.2, 8.1). Here, the logarithmic connections are
relative to the log structure of Z log, and all connections, differentials, etc., are to
be understood as being continuous with respect to the (p, q)-adic topology on OZ .

Just as in [Mzk4], §2.2, since all higher p-curvatures of these connections vanish
(cf. [Mzk3], §7.1, for a discussion of the general theory of higher p-curvatures;
[Mzk3], Corollary 7.6, for the vanishing result just quoted), we thus conclude that
the pair

(VHZ

L ,∇VHZ

L
)

defines a crystal on the site

Inf(Z log ⊗ k/A)

of (all — i.e., not just PD-) infinitesimal thickenings over A of open sub-log schemes
of Z log ⊗ k = Z log ⊗ (A/mA).

One verifies immediately (using the simple explicit structures of S, Z) that the
action of ΠS on OZ satisfies:

σ(φ) ≡ φ (mod mA · OZ)

∀σ ∈ ΠS , φ ∈ OZ , and that the correspondence

ΠS � σ �→ σ(q
1

2N·d )/q
1

2N·d

defines morphisms:

ΠS � Gal(Z/S) ∼→ (Z/2dZ)(1)

(where the first (respectively, second) arrow is a surjection (respectively, isomor-
phism)).

Next, let us observe that the property just discussed concerning the action of
ΠS on OZ implies that every σ ∈ ΠS defines an A-linear isomorphism

σ : Z log ∼→ Z log

which is the identity on Z log ⊗ k. It thus follows from:

(i) the fact that Z log defines a(n) (inductive system of) thickening(s) in the
category Inf(Z log ⊗ k/A); and

(ii) the fact that (VHZ

L ,∇VHZ

L
) forms a crystal on Inf(Z log ⊗ k/A)
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that σ induces a σ-semi-linear isomorphism

∫
σ

: V̂HZ

L → V̂HZ

L

(where “σ-semi-linear” means semi-linear with respect to the action of σ on OZ ,
and the “hat” denotes p-adic completion).

As in [Mzk4], §2.2, the justification for the notation “
∫

σ
” is that this iso-

morphism is the analogue of the isomorphism obtained in differential geometry by
“parallel transporting” — i.e., “integrating” — sections of V̂HZ

L along the “path”
σ (where we think of σ as an “element of the (algebraic) fundamental group” ΠS).
That is to say, we obtain a natural ΠS-semi-linear action of ΠS on V̂HZ

L .

Theorem 3.4. (Crystalline Nature of the Lagrangian Galois Action)
The action of ΠS on V̂HZ

L is compatible with ΞHZ

�V (cf. Corollary 3.2; here the “hat”
denotes p-adic completion) and the natural action of ΠS on Gμ

Z in the following
sense: For σ ∈ ΠS, the following diagram commutes:

V̂HZ

L
Ξ

HZ�V−→ L|0EZ
⊗OZ

OGμ
Z⏐⏐��

σ

⏐⏐�σ

V̂HZ

L
Ξ

HZ�V−→ L|0EZ
⊗OZ

OGμ
Z

(where the σ on the right denotes the result of applying σ to OGμ
Z

via the natural
action of ΠS on OGμ

Z
).

Proof. As in [Mzk4], §2.2, this follows from the naturality of all the morphisms
involved, together with the compatibility (cf. [Mzk3], Theorem 6.1) over Gμ

Z of the
connection ∇VHZ

L
with the “theta trivialization” of Proposition 3.1, (ii). ©

Corollary 3.5. (Absence of Gaussian Poles in the Lagrangian Galois
Action) Relative to the objects of the present discussion, the Lagrangian Galois
action of ΠS on HGP,HZ

DR (cf. Definition 3.3) is defined without Gaussian poles,
i.e., it arises from an action of ΠS on HHZ

DR .

Proof. As in [Mzk4], §2.2, this follows formally from the commutative diagram of
Theorem 3.4, together with Lemma 3.6 below. ©

Lemma 3.6. The image of the morphism ΞHZ

�V (cf. Corollary 3.2) is the same

as the image of its restriction ΞHZ

H to HHZ

DR ⊆ V̂HZ

L .

Proof. The proof is entirely similar to that of [Mzk4], §2.2, Lemma 2.6. ©
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Finally, just as in [Mzk4], §2.2, we observe that:

Theorem 3.4 allows us to relate the “arithmetic Kodaira-Spencer
morphism” arising from the Lagrangian Galois action to the clas-
sical geometric Kodaira-Spencer morphism.

The argument in the case p = 2, however, differs somewhat from the case of odd p.

We begin as in [Mzk4], §2.2. Let

Γ ⊆ Gal(Z/S)

be a subgroup of order > 1. Write dΓ
def= |Γ| for the order of Γ. Thus, dΓ �= 1 divides

2d, and we have a natural isomorphism Γ ∼= (Z/dΓZ)(1). Write

(p · A ⊆) mΓ � A

for the ideal generated by elements of the form 1 − ζ, where ζ is a dΓ-th root of
unity. Note that Γ acts trivially on Z ⊗ (A/mΓ) (mod mΓ). Moreover, we have a
homomorphism

λΓ : μdΓ(A) → mΓ/m2
Γ

given by ζ �→ ζ−1 (mod m2
Γ). Thus, if we think of μdΓ(A) as “(Z/dΓZ)(1)” (which

is naturally isomorphic to Γ), then we see that λΓ defines a homomorphism

δΓ : Γ → mΓ/m2
Γ

which is easily seen (by the definition of the ideal mΓ) to induce an injection Γ ⊗
(Z/pZ) ↪→ mΓ/m2

Γ.

Next, as in [Mzk4], §2.2, we would like to consider a “certain crucial portion”
of the “arithmetic Kodaira-Spencer morphism” associated to the Lagrangian Galois
action. Ultimately, however, this crucial portion in the case of p = 2 will differ
somewhat from the crucial portion in the case of p odd.

Let γ ∈ Γ. Then since γ acts on HHZ

DR via the Lagrangian Galois action
(Definition 3.3, Corollary 3.5), we see that γ defines a morphism HHZ

DR → HHZ

DR . If
we restrict this morphism to F 1(HHZ

DR), and compose with the surjection HHZ

DR �
{HHZ

DR/F 2(HHZ

DR)} ⊗A (A/m2
Γ), we thus obtain a morphism

F 1(HHZ

DR) → {HHZ

DR/F 2(HHZ

DR)} ⊗A (A/m2
Γ)

which, as in [Mzk4], §2.2, defines a morphism
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F 1(HHZ

DR) ⊗ k → {(F 3/F 2)(HHZ

DR)} ⊗A mΓ/m2
Γ =

1
2
· F 1(VHZ

L ) ⊗ τ⊗2
EHZ

⊗A mΓ/m2
Γ

i.e., we get a section ∈ 1
2 · τ⊗2

EHZ
⊗A mΓ/m2

Γ. Just as in [Mzk4], §2.2, this section
describes how the moduli of EHZ

are affected modulo m2
Γ by the action of γ —

i.e., (up to the factor of 1
2 ) it is the usual Kodaira-Spencer morphism (cf. [Mzk3],

Theorem 8.1) of the family EHZ
→ Z. On the other hand, since the q-parameter

of EHZ
is equal (up to multiplication by a 2d-root of unity) to

q
1
d = (q

1
2N·d )2N

if follows that the effect of γ on the moduli of EHZ
may be computed as follows:

γ(q
1

2N·d ) ≡ q
1

2N·d + δΓ(γ) · q 1
2N·d (mod m2

Γ)

hence

γ(q
1
d ) ≡ q

1
d + 2N · δΓ(γ) · q 1

d ≡ q
1
d (mod m2

Γ)

i.e., the moduli of EHZ
are unaffected by γ. In particular, we see that the morphism

F 1(HHZ

DR) → {HHZ

DR/F 2(HHZ

DR)} ⊗A (A/m2
Γ) considered above is identically zero.

Thus, in summary, we see that, in the present context, the action of γ deter-
mines a morphism

κγ : F 1(HHZ

DR) ⊗ k → {(F 2/F 1)(HHZ

DR)} ⊗A mΓ/m2
Γ = F 1(HHZ

DR) ⊗ τEHZ
⊗A mΓ/m2

Γ

i.e., by letting γ vary (as in [Mzk4], §2.2), we obtain a homomorphism:

κΓ : Γ → HomOZ
(F 1(HHZ

DR) ⊗ k, (F 2/F 1)(HHZ

DR) ⊗ mΓ/m2
Γ) = τEHZ

⊗ mΓ/m2
Γ

arising from the Lagrangian Galois action, taken modulo m2
Γ. If we regard κΓ as an

element

κΓ ∈ Hom(Γ, τEHZ
⊗ mΓ/m2

Γ) = Hom(Γ,mΓ/m2
Γ) ⊗ τEHZ

then it follows immediately from the discussion (in terms of deformations) of Grif-
fiths semi-transversality in [Mzk3], §8.1 (specialized to the case where the moduli of
the elliptic curve do not vary) that κΓ may be identified with the result of evaluating
the “geometric Kodaira-Spencer morphism of the line bundle LH”
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κLH
: (ΩZlog/A)∨ → τEHZ

(i.e., the morphism that describes the variation in the moduli of this line bundle)
on ∂

∂log(q
1

2N·d )
∈ (ΩZlog/A)∨ and (as in [Mzk4], §2.2) multiplying the result by δΓ.

Moreover, since the line bundle LH is defined by some torsion point (cf. the
proof of Proposition 3.1, together with the Remark following this proposition), i.e.,
if we think of EHZ

as “Gm/q
1
d Z,” the point defined by some

ζ · q
a1

2a2·d

(where a1, a2 ∈ Z are relatively prime and odd), we conclude that the effect of the
action of γ on the moduli of LH is given by

γ(q
α

2·d ) ≡ q
α

2·d + (α · N) · δΓ(γ) · q α
2·d ≡ q

α
2·d · {1 + δΓ(γ)} (mod m2

Γ)

(where α
def= a1/a2, and, in the second congruence, we use the fact that a1, a2, and

N are odd).

We summarize this discussion as follows:

Corollary 3.7. (Relation to the Classical Geometric Kodaira-Spencer
Morphism) Let

Γ ⊆ Gal(Z/S)

be a subgroup of order > 1. This subgroup Γ gives rise to a natural ideal mΓ ⊆
A (minimal among ideals modulo which Γ acts trivially on Z log) and a natural
morphism

δΓ : Γ → mΓ/m2
Γ

(defined by considering the action of Γ on q
1

2N·d modulo m2
Γ). Then the morphism

κΓ : Γ → HomOZ
(F 1(HHZ

DR) ⊗ k, (F 2/F 1)(HHZ

DR) ⊗ mΓ/m2
Γ) = τEHZ

⊗ mΓ/m2
Γ

obtained purely from the Lagrangian Galois action of Γ on HHZ

DR (cf. Definition
3.3, Corollary 3.5) by restricting this action to F 1(HHZ

DR) and then reducing modulo
m2

Γ coincides with the morphism obtained by evaluating the “geometric Kodaira-
Spencer morphism of the line bundle LH on EHZ

”

κLH
: (ΩZlog/A)∨ → τEHZ

in the logarithmic tangent direction ∂

∂log(q
1

2N·d )
∈ (ΩZlog/A)∨ and multiplying the

result by δΓ.
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Moreover, if we trivialize (ΩZlog/A)∨ via this logarithmic tangent direction and
τEHZ

via the logarithmic tangent direction ∂
∂U (where U is the standard multiplica-

tive coordinate on the copy of Gm that naturally uniformizes EHZ
), then κLH

is the
identity morphism modulo mΓ.

Thus, in summary, the arithmetic Kodaira-Spencer morphism associated
to the Lagrangian Galois action in the case p = 2 coincides modulo m2

Γ with the
usual geometric Kodaira-Spencer morphism of the ample line bundle
under consideration.

Remark. Just as in [Mzk4], §2.2, the correspondence between the logarithmic tan-
gent direction ∂

∂log(q
1

2N·d )
∈ (ΩZlog/A)∨ and the morphism δΓ is essentially the same

as the correspondence arising from Faltings’ theory of almost étale extensions be-
tween the logarithmic tangent bundle of Z log and a certain Galois cohomology
group (cf., e.g., [Mzk1], Chapter IX, §2, especially Theorem 2.6, for more details).
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